Math 55 Quiz 9 DIS 105

Name: \qquad 25 Apr 2022

1. A relation R is called circular if $a R b$ and $b R c$ imply that $c R a$. Show that R is reflexive and circular if and only if it is an equivalence relation. [4 points]

Suppose R is reflexive and circular. To show that R is an equivalence relation, we need to check that it is reflexive, symmetric, and transitive.
R is reflexive by assumption.
To show that R is symmetric: Suppose $(x, y) \in R$, then $(x, y) \in R$ and $(y, y) \in R$ by reflexiveness, so $(y, x) \in R$ by circularity.
To show that R is transitive: Suppose $(x, y) \in R$ and $(y, z) \in R$, then $(z, x) \in R$ by circularity, so $(x, z) \in R$ by symmetry proven above.
Conversely, suppose R is an equivalence relation. Then R is reflexive by definition.
To show that R is circular: Suppose $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$ by transitivity hence $(z, x) \in R$ by symmetry.
2. Give an example of a relation on the set $\{1,2,3,4\}$ that is
(a) reflexive, symmetric, and not transitive. [2 points]
(b) not reflexive, symmetric, and transitive. [2 points]
(c) reflexive, antisymmetric, and transitive. [2 points]

There are many possible answers here, we simply write down one example for each question.
(a) $\{(1,1),(2,2),(3,3),(4,4),(1,2),(2,3),(2,1),(3,1)\}$
(b) $\{(1,2),(2,1)\}$
(c) $\{(1,1),(2,2),(3,3),(4,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}=\{(a, b) \mid a \leq b\}$

